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Stochastic mixing model with power law decay of
variance

By S. Fedotov, M. Ihme and H. Pitsch

1. Motivation and objectives

The mixing of a conserved scalar c = c(t, x), advected by a turbulent flow, remains
a problem of both fundamental and practical interest. One of the basic characteristics
of the mixing process is the rate at which the scalar variance U2(t) = ((c -,a)2) decays
with time. Here IL is the mean value, and the angular brackets ( • ) denote an averaging
procedure. One of the simplest and widely used mixing models is the interaction by
exchange with the mean (IEM) (Villermaux & Devillon 1972) or linear mean square
estimate model (LMSE) (Dopazo & O'Brien 1974, Sabel'nikov & Gorokhovski 2001). In
this model, the scalar relaxes toward its mean y according to the equation

dc 1
d" -- (c - A). -(1.1)

In the coalescence-dispersion model (CD) (Curl 1963), mixing of two particle volumes
is described by (1) a coalescence and (2) dispersion process during one time step At.
After that time, both particles have the same scalar value, which is equal to the mean
of the two values before the mixing. The pdf relaxes to a bell-shaped distribution but
deviates from the Gaussian shape primarily in the tails of the distribution (Peters 2000).
Both models introduce a time scale r which is commonly approximated by a turbulent
time scale. Other mixing models are based on mapping closure, Fokker-Planck model,
euclidean minimum spanning trees (EMST), or Langevin model. Reviews of these can
be found in Peters (2000) and Pope (2000).

There are two different laws governing the decay rate of a passive scalar:
(i) the exponential law

ac(t) cc exp{-t/T} (1.2)

with the characteristic time r and
(ii) the power law

a (t) cc t-a (1.3)

without any characteristic time scale (Lesieur 1997).
Most theoretical models introduce a characteristic time scale and assume implicitly or
explicitly the exponential decay rate (1.2) which is only appropriate for stationary tur-
bulence.

The main purpose of this paper is to study the mixing process following the power law
(1.3) that is typical for decaying turbulence. Experimental results show that the decay of
the variance strongly depends on the initial ratio of the velocity and scalar length-scales
and that there is no universal decay exponent (Durbin 1982).

It is well known that the decay exponent a depends on the low wavenumber part of
the scalar and velocity spectrum, Ec(k, t) and E(k, t) (Lesieur 1997). One can expand
both spectra into a Taylor series: Ec(k,t) = 27rk 2 (Co + C 2k2 + 0(k 4 )) and E(k,t) =
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27rk 2 (Bo + B2 k2 + 0(k 4 )) (Chasnov 1994). For high Reynolds and Peclet numbers, the
scalar variance can be considered as a function of Co, Bo and t alone and dimensional
arguments lead to

U2(t) c CoBoa/1 t- 1/ (1.4)

with a = 1.2. For Co, B0 equal to zero, the scaling argument results in different approx-
imate decay laws with a equals to 6/7, 10/7 or 2 (Lesieur 1997).

Here we present a simple stochastic mixing model based on the law of large numbers
(LLN) (Feller 1966). The reason why the LLN is involved in our formulation of the
mixing problem is that the random conserved scalar c = c(t, x(t)) appears to behave
as a sample mean. It converges to the mean value u, while the variance o,(t) decays
approximately as t- 1. Since the variance of the scalar decays faster than a sample mean
(typically a is greater than unity), we will introduce some non-linear modifications into
the corresponding pdf-equation (see Eq. (2.28) below). The main idea is to develop a
robust model which is independent from restrictive assumptions about the shape of the
pdf. Here we exploit the similarity of the behavior of a scalar c to that of the sample
mean

Cn = -Z Ck, (1.5)
k=-1

where (1,..., C. is a sequence of mutually independent random variables, each having a
mean a and standard deviation au. The LLN tells us that the random sum c•, tends to
the mean value v with probability one, while the variance ao - ((cc. - )2) decays as
or/n. Then, any arbitrary initial pdfp(no, c) tends to a 6-distribution 6(c-ji) as n -* co.
In the present paper the discrete increment n can be understood as the time variable t.

The main result of this paper is the derivation of the time-discrete non-linear integral
equation for the pdf of c

14"-1

/_ 1p~t~lc)= +tA(l+E)pt 1+-•_-k•--E) (1.6)

0--1

p(t, 7-7)(t, E) dE dý,

for t = 1,2,3,.... Here O(t,,e) is the pdf for the exchange rate and A is the mixing
intensity (see below). The main property of this equation is that it describes the relaxation
from an arbitrary initial distribution to a 5-function

p(t, c) -+ (c - ) as t --+ 4o (1.7)

and the decay of the variance, a,(t) = ((c(t) -_ ) 2), is of the form t-a. The case a = 1
corresponds to the law of large numbers.

The remainder of this paper is organized as follows. In Section 2 we derive the integral
equation from a stochastic difference equation describing the evolution of the pdf of a
passive scalar in time. The stochastic difference equation introduces an exchange rate -y
which we model in a first step as a deterministic function. In a second step, we generalize
/,, as a stochastic variable taking fluctuations in the inhomogeneous environment into

account. In Section 3 we solve the non-linear integral equation numerically and analyze
the influence of the different parameters on the decay rate. The paper finishes with a
conclusion.
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FIGURE 1. Mixing problem along Lagrangian path way.

2. Mixing model

2.1. Problem statement

The evolution of a passive scalar c = c(t, x) is governed by the stochastic PDE

49- + v(t, x)Vc = DV2c, (2.1)

where v(t, x) is the random velocity field and D is the molecular (or thermal) diffusivity.
The classical problem is to derive a closed equation for the Euler one-point probability
density function (pdf) p = p(c; t, x) = (J(c - c(t, x))). A detailed discussion of this,
still unsolved, problem can be found in Pope (2000). In the present paper we consider
the mixing problem in the Lagrangian framework by introducing a passive scalar c(t) =

c(t, x(t)) of a particle volume moving with the velocity v(t, x (t)) (see Fig. 1).

2.2. Stochastic difference equation

The equation for the scalar c(t) = c(t, x(t)) of the particle volume moving with the
random velocity v(t, x(t)) can be approximated by the stochastic equation

dc
d- = -- ,(t)(c - F(t)), (2.2)

where the exchange rate -y(t) and the ambient concentration a(t) are random processes.
For the constant values of y and F, we obtain the IEM model (1.1) with the exponential
decay:

c(t) -'ac(0) - = exp{--tt} . (2.3)

The key feature of the present model is that a(t) is a random process and functional of
c(t) itself. The crucial assumption that relates Eq. (2.2) to the law of large numbers is
that the mean value (-y(t)) behaves as t- 1 for large t. One can show that for a Gaussian
scalar field c = c(t, x), the mean value (,,(t)) is proportional to the ratio X/a2, where X
is the mean scalar dissipation rate, X = 2D((Vc) 2) (Pope 2000). It follows from

dt(2d-- _= - 1 (2.4)
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that if a2(t) cc t- then X decays as t-('+'), and therefore (-y(t)) cx t- 1 . The appearance
of the power law decay can be understood if we assume that -y = A(t0 + t)-1

dc Ad= to+(c--) (2.5)

The solution to this simplified equation is

c(t) -__ ( to +(
c(O) _ .tj (2.6)

Since our aim here is to relate the mixing problem to the law of large numbers, it is more
convenient to rewrite Eq. (2.2) as a stochastic difference equation

cn+l - Cn =- -^n(Cn - Z+1), 0 _< C. < 1 , for n = 1,2,3,... (2.7)

where y/n and an are assumed to be sequences of mutually independent random variables
with the densities

w(n, ..y) = d-• 0(n,c) = dP{• < cl(2.8)

and the first moments
1 1

(-Y)() F [(n,d )d= . (2.9)( 1) w~n'fdy= 1y +---' a ]•'~)c

0 0

Here the mean exchange parameter (-yn) has been chosen in such a way that it is equal
to A/2 at time n = 1. The parameter A can be regarded as a measure of the mixing
intensity. Since 0 < c, < 1, -y, obeys the inequality 0 < -7y < 1. By introducing the
deviations from the mean u for the concentration of the particle and its surrounding,
respectively,

un = C-np, (2.10)
ýn=• • (2.11)

we can rewrite Eq. (2.7) as

un+1 = un - 7n(un - ýn+l), - < un <_1 -,, n- =1,2,3,..., (2.12)

where ý, is a sequence of zero mean, independent random variables with the density
O(n,6) and - < 1-yi.

2.3. Law of large numbers and forward Kolmogorov equation

To illustrate the connection between the mixing problem and the law of large numbers,
consider the case when the sequence • is stationary, that is o(ý) is independent of n,
and the exchange parameter -n is a deterministic sequence of the form

-= 1 (2.13)

with A = 1. If we assume ul = 61, it follows from Eq. (2.12) that u 2 = ( 61 + 2)/2,u3 =

(6 + C2 + 63)/3 and so on. Therefore, the solution of the equation (2.12) can be written
as a sample mean

1n
un -= E G (2.14)

k=1
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which tends to the mean p as n --* co while the variance (u2) cc n-1 .
The advantage of having an equation (2.12) is that we can easily derive an equation

for the probability density function

p(n, u) = -P{un < u}, n = 1, 2,3 (2.15)

It follows from Eqs. (2.12) and (2.13) that un is a discrete Markov processes and the pdf
for this process satisfies the forward Kolmogorov equation (Feller 1966)

p(n+ = 1 p, (n, (n1)u)d, n = 1 , 2,3,... (2.16)n n
-A/

Here we used the inverse equation

S= n-' [(1 + n)Un+l - • (2.17)

The main properties of the solution of the Kolmogorov equation (2.16) with the arbitrary
initial condition p(l, u) are

p(n,u) --* 5(u) as n --+ cc (2.18)

and
1-y•

> u2p(n, u)du --+ n-1  as n --+ cc. (2.19)

The asymptotic behavior of p(n, u) for large n is quite universal. It can be written as

p(n, u) oc vy'nexp {-nS(u)} for n > 1, (2.20)

where the function S(u) depends on the particular choice of the density 0(ý) for the
random sequence ýk. One can show that S(u) obeys the equation (Knessl et al. 1985)

1 -#

ud-S=lnM (dS) M(x) exp{x }so(ý)d . (2.21)
du l du '

-/1

2.4. General case: random exchange rate and non-linear equation for the pdf

To account for the entire spectrum of time scales we now assume that the exchange
parameter -n is a stochastic variable. It is convenient to write

A
S= i (1 + n n) (2.22)

where En is the sequence of zero mean, independent random variables. Since 0 < < - 1,
it follows from Eq. (2.22) that

l+n
< E < 1 + 1. (2.23)

A

The decay of the variance of the exchange rate,a (n), can be determined as

o2ý (n) ( n) (2.24)a•(n = (Tn- (n))) =(1 + n)2"
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When both e,, and •. are random variables, we have to specify the joint probability
density for 6 and ý. If we denote it by •i(n, E, ý), then the forward Kolmogorov equation
for p(n, u) takes the form

l-p 14-1

p(n + 1, u) n =,( ) AI+E)%~,E
J f I+n-A(I+E) 1+n-A(l+E) /

-ii --1

(2.25)
This equation follows from the stochastic difference equation for the Markov jump process

A
un+1 =U.- 1-n(1+En)(un-6n+1) for - _<un 5 1-P (2.26)

and its inverse function

Un - (n + 1)Un+l -- A(1 + E)6n+l (2.27)

1+n-A(l+E)

Since -yn is determined by the random scalar dissipation rate, it is natural to assume
that -y, and 6 are independent. Moreover, the density for 6" must be related to p(n, u).
The simplest choice would be to assume p(n,6) which gives '(n,e,•) = p(n,6)V(n,e)
and the generalized non-linear integral equation for p(n, u) can be written as

I--P•--

p(n+l, u)=n + 1_ _ )_n,(n_+ - A(1 ±E)I I l +n-A( )pn'l+n-A(l+)
-- i -- 1

(2.28)
for n = 1, 2, 3,.... It follows from Eq. (2.24) that the variance of the exchange rate o2(n)
decays as n-2 . In the subsequent sections we assume for simplicity that the variance

2 = (E2,) is constant.
We expect that the variance of a passive scalar o2(n) = ((cn - p)2) = (u2) behaves as

n-' for large n. Taking the analytical solution of the simplified model (2.5) into account,
we anticipate a strong dependence of a on the mixing intensity A.

3. Results

The integral equation (2.28) describes the relaxation of an arbitrary initial density
distribution of a conserved scalar c to a 6-distribution for large n. Because of the non-
linearity in c and a, the equation needs to be solved numerically for non-trivial initial
conditions.

The trivial case A = 0 describes the motion of an inert particle (e.g. dye) in its surround
and Eq. (2.12) has the simple solution un = ul for all n. However, if A is close to its upper
limit, the Lagrangian particle volume experiences strong interactions with its surrounding
and intuitively, it can be expected that the mixing intensity A has a distinct influence on
the decay of oa' (see solution (2.6) to simplified equation).

The stochastic variable E influences the exchange rate -y, and the effect of its dis-
tribution on the decay exponent a is desirable to understand. Formally, we can ex-
press a as a non-explicit available function of the form a = a(A, O(n, E)) where A =
A(i,,/e, Pe or Re). In the subsequent sections the behavior of Eq. (2.28) for different
parameters and initial conditions is analyzed.
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3.1. Numerical issues

In order to advance the density p(n + 1, u) in time, Eq. (2.28) must be integrated over
the ý- and E-space which results in the overall-complexity O(Nu x Ný x N,) for each
time step. Here, NC denotes the number of grid points in the C-direction. This makes the
computation rather time-consuming. However, a computer code can be easily parallelized
along the u-coordinate.

The initial density of u relaxes to a 6-distribution with steep gradients around u = 0.
An adaptive grid using the equidistribution principle is employed in u- and a-space in
order to resolve the shape of the pdf properly. In the equidistribution principle (Liseikin
1999), an initially given number of grid points is distributed in such a way that the

condition f+' w(u)du = (N. - 1)-' f 1-- w(u)du is satisfied. The weight function w(u)
is a positive function measuring the variation of the solution.

3.2. Parameters and initial conditions

From experiments and DNS studies it is shown that the density distribution of a passive
scalar can be reasonably approximated by a f3-distribution. The /-distribution has non-
zero probability in the interval [Umin, Umax] and has the form

#(u; r(a)r(b) (Umax - Umin)1-a-b(U - Umin)a-1 (Umax - u)b- 1 
" (3.1)

It is fully described by two parameters, which are functions of (u) and or2

a=Umaxu) - Umin [((U) - Umin)(Umax - (U)) 1 (3.2)
a- a -ri [ Or2 Ii (32

b= mUmax - (U) [((U) - Umin)(Umax - (u)) 1 (3.3)
Umax -Umin 1. 02 ij-

The /3-distribution adopts a wide range of shapes: for the maximum variance a =2

and zero mean a double 6-distribution at umin and Umax is approached and for small o-2

a Gaussian distribution around (u) is obtained. Throughout the following simulations,
this distribution is used as initial condition for p(l, u).

In order to solve Eq. (2.28) we have to provide an appropriate density distribution
for the random fluctuation e. The time-dependent distribution of E is certainly problem-
dependent and unknown in the present consideration. Therefore we assume for simplicity
that e has a statistically stationary distribution. A reasonable choice would be to assume
that E is distributed following Eq. (3.1). A particular case is obtained if V)(-) has a
6-distribution. For the following test cases we use both distributions as prescribed prob-
abilities. The constant parameters for all simulations of Eq. (2.28) are summarized in
Table 1.

3.3. Influence of initial distribution in p(l, u)

In the first numerical experiment the dependence of the decay exponent a on the initial
conditions in u and e is investigated. Therefore, prescribed distributions with different
initial variance for o2(1) and a' are used (see Table 2 and Fig. 2). For this simulation
A is chosen to be unity and - is in the range -1 < E < (1 + n)/A - 1. The maximum
possible value for - is then found for n = 1.

The decay rate of a'u and the decay exponent a are evaluated and plotted in Fig. 3.
In the left column, the four different combinations with initial variance au2 (1) = 0.20 are
plotted, the middle column shows the decay rate for the cases with ou2(1) = 0.15. In the
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Parameter Description Value

nEnd number of time steps 100,000
A mean value 0.5

N. dimension of u 101
NC dimension of ý 101
N6  dimension of c 101

TABLE 1. Fixed parameters used for the numerical simulation.

Run p(1,u) 0(1,E)= 0(e) Run p(1,u) V)(1,E)= b(e)

BB1 )3(0.20) /3(0.500) BB7 /3(0.05) /3(0.500)
BB2 /3(0.20) 3(0.250) BB8 /3(0.05) /3(0.250)
BB3 /3(0.20) /3(0.125) BB9 /3(0.05) /3(0.125)
BB4 /3(0.15) /3(0.500) BD1 /3(0.20) 6(e)
BB5 /3(0.15) /3(0.250) BD2 /3(0.15) 6(e)
B16 /3(0.15) /3(0.125) BD3 /3(0.05) 6(E)

TABLE 2. Combinations of initial distributions used for the parameter study: O3(CC) -

/3-distribution with prescribed variance o2; 5(C) - Dirac 5-function for C.

3 3 ,

2.5 0(0200) 2.5 0 /(0.500)
(0150) ............. ( 25 )
(0005)....... (0.12)

3 1.5 1.5

0.5 .....0.5 . .. ... ....... ...
L 1 0.5,L

-0.5 -0.25 0 0.25 0.5 -1 -0.5 0 0.5
IL 6

FIGURE 2. Initial conditions for p(l, u) and 0(1, e) = V(e); A = 1.0.

right column, the evolution of p(n, u) is shown for the mono-modal initial /3-distribution
with au(1) = 0.05. From the bottom row of Fig. 3 it can be seen that p(n, u) experiences
strong dynamics over the initial interval, say for n < 10. Over this interval the variance
does not follow the power law decay. Furthermore it can be deduced that the stochastic
perturbation e reduces the decay rate of a2 if aU is close to a2 . (see solid curves).

The influence of the initial distribution of e on the evolution of p(n, u) and consequently
on au2(n) vanish for large n. This is most pronounced for the cases BB7-BB9 and BD3
(right column). Here the decay exponents for all of these cases collapse to a single curve,
independent of 0(c).
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or2(1) = 0.20 aC2(1) = 0.15 oZ(1) - 0.05

0
S- " BB2 BB7•, " •:----.--- BB.....B.

-2 " BB3 BB6 ....... BB9
SBD1 BD2 BD3

.• -5

-6
-3

253 ......... .... . ..., . . .. . .... • ., . . . ..• . . .. J . . .. . . .

1.5 -

S........ ........ .... ..

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
og10 (n) logl0(n) loglo(n)

FiGURE 3. Evolution of o-, and decay exponent a for the initial 13distribution in u.

Run p(1, u) P(E)

Dynl [6(A+u)+6(1-pu-u)]/2 6(e)
Dyn2 63(0.15) )3(0.50)

TABLE 3. Combinations used to study dynamic behavior of p(n, u) for A = 0.75.

From this simulation it can be concluded that the initially assumed distribution for E
has only marginal influence on the decay exponent a for large n. During the simulation
the value for a never reaches a steady state. The final convergence rate for n = 100,000
is Ida/dnl < 1.0 x 10-6 so that a is in the range 1.50 < a < 1.65 for all test cases used
in the present section.

3.4. Dynamic behavior of p(n, u)

In the present section we are interested in the influence of O(E) on the dynamics of2

p(n, u). The transitional behavior of au can be retarded if the mixing intensity A is
small. This effect was already discussed previously. In the present section the mixing
intensity A = 0.75 is used.

In order to obtain insight into the transitional behavior we use a double 6-distribution
and a bimodal 13-distribution as initial condition for u, p(1, u) = [5(,U+u)+5(1 - #-u)]/2
and p(1, u) = 63(0.15). For O(e) = 6(e) a simple analytical solution to Eq. (2.28) can be
found for the first time step n = 1. For clarity the different combinations used here are
summarized in Table 3. At n = 1 the initial distribution for the case Dyni splits up into
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Dynl Dyn2

3 . * ,, I •

2-

- n=! 00
tv ........ 11 ..... .i ... . .........i~

0 .............. .... .i' " ...... 4".i••,

-0.5 -0.25 0 0.25 0.5 -05 -0.25 0 0.25 0.5
U U

FIcURE 4. Transitional behavior of p(n, u) for different initial conditions and mixing intensity.

Run A p(l, u) 0 (e) [m~in,Emax]

LA1 1.50 /3(0.15) /3(0.20) [-1,1/3]
LA2 1.00 /3(0.15) /3(0.20) [-1,1]
LA3 0.75 /3(0.15) /3(0.20) [-1,5/3]
LA4 0.50 /3(0.15) /3(0.20) [-1,3]
LA5 0.25 /3(0.15) /3(0.20) [-1,7]

TABLE 4. Combinations used to study the influence of the mixing intensity A on the evolution
of the variance.

four peaks at positions u = A(--y)/2 +y with y = {-pi, 1 - A) and • = {-I, 1 -u}. In
the succeeding time those peaks move toward the center u = 0 whereas the tails flatten.

An entirely different dynamic behavior is obtained for the case Dyn2. The initially
smooth density function p(l, u) transits rapidly to a mono-modal distribution and con-
verges to the J-pdf. With the results of this and the previous section we can summarize
that the prescribed distribution of 6 influences the transitional dynamics of p(n, u), how-
ever its effect on the decay exponent a for large n is insignificant.

3.5. Mixing intensity A
From experiments and DNS studies it is well-known that the decay rate strongly depends
on the initial ratio of the velocity and scalar length-scales, fu and t,. The free param-
eter A is introduced in the exchange rate (2.22) in order to link the present model to
physical processes. It needs to be emphasized that we did not attempt to reproduce any
experimental or numerical data, amply and in great diversity available in the literature.
Presently, we are only interested in understanding the general behavior of Eq. (2.28). It
was concluded previously that the presumed form of O(E) has only insignificant influence
on the decay rate. However, the dynamic behavior of p(n, u) in the transitional range
is influenced by the stochastic variable E. In anticipation of the overall weak influence
of O(E) on the decay exponent we chose arbitrarily O(E) = /3(0.20) whereas O(E) has
non-zero probability only in the interval -1 < E < 2/A - 1. The parameters used for the
five different test cases are summarized in Table 4.

Figure 5 shows the distinct dependence of the mixing intensity on the decay of a2U.
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.. ........ ......................... ....... ......

........................... ...... ..........

(...0.50) ..................................................

- 26 LA5 (A = 0.25) .................................. ...........................3...... 
..., .......

0.5 . . . . . . . . . . . . .............. ..... .-----_ ........ ....... . . . . . . ....

... ............

-4LA.150

-6 ..5 ... A , .0

-7 . . i . i , .. . ... . . . I . , . . . . . . . I . . . . . .

0 1 2 3 4

log10(vi)

FIGURE 5. Decay of o2 for different mixing intensities A.

Experiments on turbulent mixing show that the variance u2 decreases faster with in-
creasing ratio 4u/4, until about 4•/4c 5. For ratios greater than that value the depen-
dence is negligible. This tendency can be resembled by changing the mixing intensity A.
The power law exponent c• is approximately 1.77 for high mixing intensity and decreases
to about 0.62 for A = 0.25 which corresponds to an indolent mixing process. From the
present findings it is difficult to specify the exact functional relation between A and initial
conditions used in experiments. Therefore we express the mixing intensity formally as
A = A(e•/ec, Re or Pe).

4. Conclusion

In the present paper we presented a robust mixing model based on the law of largenumbers. The exchange rate decays as t 1 and links the mixing model to the law of large

numbers. By adding stochastic fluctuations to the exchange rate, we extend the model
to the general case, taking the fluctuations of the surround into account.

The sensitivity of the model is analyzed for different initial conditions and parameters.
It was shown that the initial distribution for e and u has only insignificant influence on
the decay rate of the variance. This is to be expected because the initial distribution of
the scalar is almost never measured in experiments, assuming implicitly that either the
scalar is distributed initially as a double 6-function or generally disregard the dependence
of the decay of oc2 on the initial density distribution.

It was shown that with increasing mixing intensity the variance of the passive scalar
decreases faster. The connection of our model to physical mixing processes is provided
through A, which can account for initial length-scale dependences 4•/4 and other physical
effects.
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